Load library and data
# Load libraries
library("edgeR")
## Loading required package: limma
library("limma")
library("plyr")
library("ashr")
## Warning: package 'ashr' was built under R version 3.4.4
library("cowplot")
## Warning: package 'cowplot' was built under R version 3.4.4
## Loading required package: ggplot2
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
##
## ggsave
library("vashr")
## Loading required package: SQUAREM
## Loading required package: qvalue
library("devtools")
#devtools::install_github("jhsiao999/mediation/pkg")
library("medinome")
FDR_level = 0.05
# import sample labels
samples <- read.delim("../../../Reg_Evo_Primates/data/Sample_info_RNAseq_RIN.txt")
RIN <- samples$RIN
# expression
exprs <- read.table("../../../Reg_Evo_Primates/data/250_exp_avg_methyl_hcr_4155_genes.txt", sep="")
# Normalized gene expression data
cpm.voom.cyclic <- readRDS("../../../Reg_Evo_Primates/data/human_chimp_orth_cpm_voom_cyclic.rds")
Human-rhesus heart- DE genes
# Check parameters
human_chimp_heart <- c(32, 36, 40, 44, 20, 24, 28)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
## Warning: package 'assertthat' was built under R version 3.4.4
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 3889 266
Human versus rhesus heart- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.3378995
ind_sigg <- (fit_ash$result$svalue < 0.05)
ind_sigg[ind_sigg == TRUE] <- "red"
ind_sigg[ind_sigg == FALSE] <- "black"
combine_datag <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sigg), stringsAsFactors = FALSE)
combine_datag[,1] <- as.numeric(combine_datag[,1])
combine_datag[,2] <- as.numeric(combine_datag[,2])
colnames(combine_datag) <- c("Effect", "SE", "ind_sigg")
hr_deg <- ggplot(combine_datag, aes(combine_datag$Effect, combine_datag$SE)) + geom_point(color = c(combine_datag$ind_sigg)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Human versus rhesus heart- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.005228758
ind_sigh <- (fit_ash$result$svalue < 0.05)
ind_sigh[ind_sigh == TRUE] <- "red"
ind_sigh[ind_sigh == FALSE] <- "black"
combine_datah <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sigh), stringsAsFactors = FALSE)
combine_datah[,1] <- as.numeric(combine_datah[,1])
combine_datah[,2] <- as.numeric(combine_datah[,2])
colnames(combine_datah) <- c("Effect", "SE", "ind_sigh")
hr_deh <- ggplot(combine_datah, aes(combine_datah$Effect, combine_datah$SE)) + geom_point(color = c(combine_datah$ind_sigh)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Human-rhesus kidney- DE genes
# Check parameters
human_chimp_heart <- c(33, 37, 41, 45, 17, 21, 25, 29)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 4073 82
Human versus rhesus kidney- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.3333333
ind_sig <- (fit_ash$result$svalue < 0.05)
ind_sig[ind_sig == TRUE] <- "red"
ind_sig[ind_sig == FALSE] <- "black"
combine_dataa <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sig), stringsAsFactors = FALSE)
combine_dataa[,1] <- as.numeric(combine_dataa[,1])
combine_dataa[,2] <- as.numeric(combine_dataa[,2])
colnames(combine_dataa) <- c("Effect", "SE", "ind_sigc")
hr_dea <- ggplot(combine_dataa, aes(combine_dataa$Effect, combine_dataa$SE)) + geom_point(color = c(combine_dataa$ind_sigc)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Human versus rhesus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.005989583
ind_sigd <- (fit_ash$result$svalue < 0.05)
ind_sigd[ind_sigd == TRUE] <- "red"
ind_sigd[ind_sigd == FALSE] <- "black"
combine_datab <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sigd), stringsAsFactors = FALSE)
combine_datab[,1] <- as.numeric(combine_datab[,1])
combine_datab[,2] <- as.numeric(combine_datab[,2])
colnames(combine_datab) <- c("Effect", "SE", "ind_sigd")
hr_deb <- ggplot(combine_datab, aes(combine_datab$Effect, combine_datab$SE)) + geom_point(color = c(combine_datab$ind_sigd)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Liver
# Check parameters
human_chimp_heart <- c(34, 38, 42, 46, 18, 22, 26, 30)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 4057 98
Human versus rhesus liver- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.4021352
ind_sig <- (fit_ash$result$svalue < 0.05)
ind_sig[ind_sig == TRUE] <- "red"
ind_sig[ind_sig == FALSE] <- "black"
combine_datac <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sig), stringsAsFactors = FALSE)
combine_datac[,1] <- as.numeric(combine_datac[,1])
combine_datac[,2] <- as.numeric(combine_datac[,2])
colnames(combine_datac) <- c("Effect", "SE", "ind_sigc")
hr_dec <- ggplot(combine_datac, aes(combine_datac$Effect, combine_datac$SE)) + geom_point(color = c(combine_datac$ind_sigc)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Human versus rhesus liver- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.008776458
ind_sigd <- (fit_ash$result$svalue < 0.05)
ind_sigd[ind_sigd == TRUE] <- "red"
ind_sigd[ind_sigd == FALSE] <- "black"
combine_datad <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sigd), stringsAsFactors = FALSE)
combine_datad[,1] <- as.numeric(combine_datad[,1])
combine_datad[,2] <- as.numeric(combine_datad[,2])
colnames(combine_datad) <- c("Effect", "SE", "ind_sigd")
hr_ded <- ggplot(combine_datad, aes(combine_datad$Effect, combine_datad$SE)) + geom_point(color = c(combine_datad$ind_sigd)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Lung
# Check parameters
human_chimp_heart <- c(35, 39, 43, 47, 19, 23, 27, 31)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 4061 94
Human versus rhesus lung- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.2151394
ind_sig <- (fit_ash$result$svalue < 0.05)
ind_sig[ind_sig == TRUE] <- "red"
ind_sig[ind_sig == FALSE] <- "black"
combine_datae <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sig), stringsAsFactors = FALSE)
combine_datae[,1] <- as.numeric(combine_datae[,1])
combine_datae[,2] <- as.numeric(combine_datae[,2])
colnames(combine_datae) <- c("Effect", "SE", "ind_sigc")
hr_dee <- ggplot(combine_datae, aes(combine_datae$Effect, combine_datae$SE)) + geom_point(color = c(combine_datae$ind_sigc)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)
Human versus rhesus lung- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.0002939447
ind_sigd <- (fit_ash$result$svalue < 0.05)
ind_sigd[ind_sigd == TRUE] <- "red"
ind_sigd[ind_sigd == FALSE] <- "black"
combine_dataf <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sigd), stringsAsFactors = FALSE)
combine_dataf[,1] <- as.numeric(combine_dataf[,1])
combine_dataf[,2] <- as.numeric(combine_dataf[,2])
colnames(combine_dataf) <- c("Effect", "SE", "ind_sigd")
hr_def <- ggplot(combine_dataf, aes(combine_dataf$Effect, combine_dataf$SE)) + geom_point(color = c(combine_dataf$ind_sigd)) + ylab("Standard error") + xlab("Effect size difference") + ylim(0, 6.5) + xlim(-8, 8)