getwd()
## [1] "/Users/laurenblake/Desktop/Regulatory_Evol/ashlar-trial/analysis"
# import sample labels
samples <- read.delim("../../../Reg_Evo_Primates/data/Sample_info_RNAseq_RIN.txt")
RIN <- samples$RIN
# expression
exprs <- read.table("../../../Reg_Evo_Primates/data/human_chimp_orth_exp_methyl_7725_hum.txt", sep="")
# methylation data
methyl <- read.csv("../../../Reg_Evo_Primates/data/chimp_human_orth_7725_avg_methyl_per_ts_gene.txt", sep="")
# Normalized gene expression data
cpm.voom.cyclic <- readRDS("../../../Reg_Evo_Primates/data/human_chimp_orth_cpm_voom_cyclic.rds")
# Load libraries
library("edgeR")
## Loading required package: limma
library("limma")
library("plyr")
library("ashr")
## Warning: package 'ashr' was built under R version 3.4.4
library("cowplot")
## Warning: package 'cowplot' was built under R version 3.4.4
## Loading required package: ggplot2
##
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggplot2':
##
## ggsave
library("vashr")
## Loading required package: SQUAREM
## Loading required package: qvalue
library("devtools")
#devtools::install_github("jhsiao999/mediation/pkg")
library("medinome")
Set FDR level/svalue
FDR_level <- 0.05
#FDR_add <- 0.10
Chimp heart-kidney
# Check parameters
human_chimp_heart <- c(1, 2, 5, 6, 9, 10, 13, 14)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:79]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(hc_exprs_heart) <- rownames(exprs)
rownames(methyl) <- rownames(exprs)
Y <- hc_exprs_heart
two_species <- samples$Tissue[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
## Warning: package 'assertthat' was built under R version 3.4.4
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 7407 318
Human heart versus kidney- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.1152838
Human heart versus kidney- conserved DE genes
# Species no DE
species_no_DE <- c(17, 20, 21, 24, 25, 28, 29)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] < FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 843 320
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.2751505
# Species no DE
species_no_DE <- c(17, 20, 21, 24, 25, 28, 29)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] > FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 2177 95
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.04181338
Human heart versus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0
Chimp heart-liver
# Check parameters
human_chimp_heart <- c(1, 3, 5, 7, 9, 11, 13, 15)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:79]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(hc_exprs_heart) <- rownames(exprs)
rownames(methyl) <- rownames(exprs)
Y <- hc_exprs_heart
two_species <- samples$Tissue[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 7276 449
Human heart versus lung- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.1584322
Human heart versus kidney- conserved DE genes
# Species no DE
species_no_DE <- c(18, 20, 22, 24, 26, 28, 30)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] < FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 849 485
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.3635682
# Species no DE
species_no_DE <- c(18, 20, 22, 24, 26, 28, 30)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] > FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 2162 127
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.05548274
Human heart versus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0
Chimp heart-lung
# Check parameters
human_chimp_heart <- c(1, 4, 5, 8, 9, 12, 13, 16)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:79]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(hc_exprs_heart) <- rownames(exprs)
rownames(methyl) <- rownames(exprs)
Y <- hc_exprs_heart
two_species <- samples$Tissue[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 7565 160
Human heart versus kidney- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.06930369
Human heart versus lung- conserved DE genes
# Species no DE
species_no_DE <- c(19, 20, 23, 24, 27, 28, 31)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] < FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 920 197
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.1763653
# Species no DE
species_no_DE <- c(19, 20, 23, 24, 27, 28, 31)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] > FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 1900 42
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.02162719
Human heart versus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0
Chimp kidney-liver
# Check parameters
human_chimp_heart <- c(2, 3, 6, 7, 10, 11, 14, 15)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:79]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(hc_exprs_heart) <- rownames(exprs)
rownames(methyl) <- rownames(exprs)
Y <- hc_exprs_heart
two_species <- samples$Tissue[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 7476 249
Human heart versus kidney- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.1069973
Human heart versus lung- conserved DE genes
# Species no DE
species_no_DE <- c(17, 18, 21, 22, 25, 26, 29, 30)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] < FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 1034 277
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.2112891
# Species no DE
species_no_DE <- c(17, 18, 21, 22, 25, 26, 29, 30)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] > FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 1590 43
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.0263319
Human heart versus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0
Chimp kidney-lung
# Check parameters
human_chimp_heart <- c(2, 4, 6, 8, 10, 12, 14, 16)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:79]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(hc_exprs_heart) <- rownames(exprs)
rownames(methyl) <- rownames(exprs)
Y <- hc_exprs_heart
two_species <- samples$Tissue[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 7591 134
Human heart versus kidney- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.06769118
Human heart versus lung- conserved DE genes
# Species no DE
species_no_DE <- c(17, 19, 21, 23, 25, 27, 29, 31)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] < FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 555 136
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.1968162
# Species no DE
species_no_DE <- c(17, 19, 21, 23, 25, 27, 29, 31)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] > FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 1977 65
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.03183154
Human heart versus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0
Chimp liver-lung
# Check parameters
human_chimp_heart <- c(3, 4, 7, 8, 11, 12, 15, 16)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:79]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(hc_exprs_heart) <- rownames(exprs)
rownames(methyl) <- rownames(exprs)
Y <- hc_exprs_heart
two_species <- samples$Tissue[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash_normal$result$svalue < 0.05)
## Mode FALSE TRUE
## logical 7427 298
Human heart versus kidney- DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.1124732
Human heart versus lung- conserved DE genes
# Species no DE
species_no_DE <- c(18, 19, 22, 23, 26, 27, 30, 31)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] < FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 917 303
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.2483607
# Species no DE
species_no_DE <- c(18, 19, 22, 23, 26, 27, 30, 31)
species_no_DE_exprs <- hc_exprs[,species_no_DE]
species_no_DE_methyl <- exprs_methyl[,species_no_DE]
two_species <- samples$Tissue[species_no_DE]
no_DE_tissue <- droplevels.factor(two_species)
no_DE_RIN <- RIN[species_no_DE]
design <- model.matrix(~ as.factor(no_DE_tissue) + no_DE_RIN)
fit_species_no_DE <- lmFit(cpm.voom.cyclic[,species_no_DE], design)
fit_species_no_DE <- eBayes(fit_species_no_DE)
HvC_Heart_fit_species_no_DE = topTable(fit_species_no_DE, coef=2, adjust="BH", number=Inf,
sort.by="none")
# Species DE
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_species_no_DE = cbind(HvC_Heart_fit_species_no_DE, HvC_Heart_fit_all)
HvC_Heart_fit_all_5perc <- HvC_Heart_fit_species_no_DE[which(HvC_Heart_fit_species_no_DE[,6] > FDR_level & HvC_Heart_fit_species_no_DE[,13] < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
summary(fit_ash$result$svalue < FDR_level)
## Mode FALSE TRUE
## logical 1967 76
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0.0372002
Human heart versus kidney- non DE genes
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
## [1] 0