This is a script to evaluate the effect sizes of the 2 linear models.
getwd()
[1] "/Users/laurenblake/Desktop/Regulatory_Evol/ashlar-trial/analysis"
# import sample labels
samples <- read.delim("../../../Reg_Evo_Primates/data/Sample_info_RNAseq_RIN.txt")
RIN <- samples$RIN
# expression
exprs <- read.table("../../../Reg_Evo_Primates/data/250_exp_avg_methyl_hcr_4155_genes.txt", sep="")
# Normalized gene expression data
cpm.voom.cyclic <- readRDS("../../../Reg_Evo_Primates/data/human_chimp_orth_cpm_voom_cyclic.rds")
# Load libraries
library("edgeR")
Loading required package: limma
library("limma")
library("plyr")
library("ashr")
library("cowplot")
Warning: package 'cowplot' was built under R version 3.4.4
Loading required package: ggplot2
Warning: package 'ggplot2' was built under R version 3.4.4
Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':
ggsave
library("vashr")
Loading required package: SQUAREM
Loading required package: qvalue
library("devtools")
Warning: package 'devtools' was built under R version 3.4.4
#devtools::install_github("jhsiao999/mediation/pkg")
library("medinome")
FDR_level <- 0.05
# Check parameters
human_chimp_heart <- c(32, 36, 40, 44, 20, 24, 28)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash_normal <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
summary(fit_ash_normal$result$svalue < 0.05)
Mode FALSE TRUE
logical 3889 266
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.3378995
ind_sig <- (fit_ash$result$svalue < 0.05)
ind_sig[ind_sig == TRUE] <- "red"
ind_sig[ind_sig == FALSE] <- "black"
combine_data <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sig), stringsAsFactors = FALSE)
combine_data[,1] <- as.numeric(combine_data[,1])
combine_data[,2] <- as.numeric(combine_data[,2])
colnames(combine_data) <- c("Effect", "SE", "ind_sig")
hr_de <- ggplot(combine_data, aes(combine_data$Effect, combine_data$SE)) + geom_point(color = c(combine_data$ind_sig)) + ylab("Standard error") + xlab("Effect size difference")
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.005228758
ind_sigd <- (fit_ash$result$svalue < 0.05)
ind_sigd[ind_sigd == TRUE] <- "red"
ind_sigd[ind_sigd == FALSE] <- "black"
combine_datad <- as.data.frame(cbind(fit_ash$result$betahat, fit_ash$result$sebetahat, ind_sigd), stringsAsFactors = FALSE)
combine_datad[,1] <- as.numeric(combine_datad[,1])
combine_datad[,2] <- as.numeric(combine_datad[,2])
colnames(combine_datad) <- c("Effect", "SE", "ind_sig")
hr_nonde <- ggplot(combine_datad, aes(combine_datad$Effect, combine_datad$SE)) + geom_point(color = c(combine_datad$ind_sig)) + ylab("Standard error") + xlab("Effect size difference")
# Check parameters
human_chimp_heart <- c(33, 37, 41, 45, 17, 21, 25, 29)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.3333333
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.005989583
# Check parameters
human_chimp_heart <- c(34, 38, 42, 46, 18, 22, 26, 30)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.4021352
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.008776458
# Check parameters
human_chimp_heart <- c(35, 39, 43, 47, 19, 23, 27, 31)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.2151394
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.0002939447
FDR_level <- 0.1
# Check parameters
human_chimp_heart <- c(32, 36, 40, 44, 20, 24, 28)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.3059452
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.003386005
# Check parameters
human_chimp_heart <- c(33, 37, 41, 45, 17, 21, 25, 29)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.2401091
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.001753361
# Check parameters
human_chimp_heart <- c(34, 38, 42, 46, 18, 22, 26, 30)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.3074141
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.005830094
# Check parameters
human_chimp_heart <- c(35, 39, 43, 47, 19, 23, 27, 31)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.1601695
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0
FDR_level <- 0.01
# Check parameters
human_chimp_heart <- c(32, 36, 40, 44, 20, 24, 28)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.4918478
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:7]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=5, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.01610774
# Check parameters
human_chimp_heart <- c(33, 37, 41, 45, 17, 21, 25, 29)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.6875
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.008731506
# Check parameters
human_chimp_heart <- c(34, 38, 42, 46, 18, 22, 26, 30)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.5111111
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.01192214
# Check parameters
human_chimp_heart <- c(35, 39, 43, 47, 19, 23, 27, 31)
# Methylation
hc_exprs <- exprs[,2:48]
exprs_methyl <- exprs[,49:95]
# HC heart only
hc_exprs_heart <- hc_exprs[,human_chimp_heart]
rownames(hc_exprs_heart) <- exprs[,1]
methyl <- exprs_methyl[,human_chimp_heart]
rownames(methyl) <- exprs[,1]
Y <- hc_exprs_heart
two_species <- samples$Species[human_chimp_heart]
X <- droplevels.factor(two_species)
M <- methyl
RIN_subset <- RIN[human_chimp_heart]
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val < FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.4155251
# Run the linear model in limma
design_1 <- model.matrix(~ X + RIN_subset)
fit_all <- lmFit(cpm.voom.cyclic[,human_chimp_heart], design_1)
fit_all <- eBayes(fit_all)
# Get results
HvC_Heart_fit_all = topTable(fit_all, coef=2, adjust="BH", number=Inf, sort.by="none")
HvC_Heart_fit_all_5perc <-
HvC_Heart_fit_all[which(HvC_Heart_fit_all$adj.P.Val > FDR_level), ]
human_chimp_heart1 <- rownames(methyl) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(methyl, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
M <- counts_human_chimp_heart_subset
human_chimp_heart1 <- rownames(hc_exprs_heart) %in% rownames( HvC_Heart_fit_all_5perc)
human_chimp_heart1 <- as.data.frame(human_chimp_heart1)
counts_genes_in <- cbind(hc_exprs_heart, human_chimp_heart1)
counts_genes_in_cutoff <- subset(counts_genes_in, human_chimp_heart1 == "TRUE")
counts_human_chimp_heart_subset <- counts_genes_in_cutoff[,1:8]
Y <- counts_human_chimp_heart_subset
check_values <- mediate.test.regressing(Y, X, M, RIN_subset)
fit <- vash(check_values$d_se,df=6, singlecomp = T, unimodal = "auto")
fit_ash <- ash(as.vector(check_values$d), fit$sd.post, mode = 0, mixcompdist = "normal")
Due to absence of package REBayes, switching to EM algorithm
calc <- as.array(summary(fit_ash$result$svalue < FDR_level))
calc2 <- as.numeric(calc[[2]])
(nrow(Y)-calc2)/nrow(Y)
[1] 0.00254065