Last updated: 2018-08-28

workflowr checks: (Click a bullet for more information)
  • R Markdown file: uncommitted changes The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 241c630

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    analysis/.DS_Store
        Ignored:    data/.DS_Store
        Ignored:    data/aux_info/
        Ignored:    data/hg_38/
        Ignored:    data/libParams/
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  _workflowr.yml
        Untracked:  analysis/Collection_dates.Rmd
        Untracked:  analysis/Converting_IDs.Rmd
        Untracked:  analysis/Global_variation.Rmd
        Untracked:  analysis/Preliminary_clinical_covariate.Rmd
        Untracked:  analysis/VennDiagram2018-07-24_06-55-46.log
        Untracked:  analysis/VennDiagram2018-07-24_06-56-13.log
        Untracked:  analysis/VennDiagram2018-07-24_06-56-50.log
        Untracked:  analysis/VennDiagram2018-07-24_06-58-41.log
        Untracked:  analysis/VennDiagram2018-07-24_07-00-07.log
        Untracked:  analysis/VennDiagram2018-07-24_07-00-42.log
        Untracked:  analysis/VennDiagram2018-07-24_07-01-08.log
        Untracked:  analysis/VennDiagram2018-08-17_15-13-24.log
        Untracked:  analysis/VennDiagram2018-08-17_15-13-30.log
        Untracked:  analysis/VennDiagram2018-08-17_15-15-06.log
        Untracked:  analysis/VennDiagram2018-08-17_15-16-01.log
        Untracked:  analysis/VennDiagram2018-08-17_15-17-51.log
        Untracked:  analysis/VennDiagram2018-08-17_15-18-42.log
        Untracked:  analysis/VennDiagram2018-08-17_15-19-21.log
        Untracked:  analysis/VennDiagram2018-08-20_09-07-57.log
        Untracked:  analysis/VennDiagram2018-08-20_09-08-37.log
        Untracked:  analysis/VennDiagram2018-08-26_19-54-03.log
        Untracked:  analysis/VennDiagram2018-08-26_20-47-08.log
        Untracked:  analysis/VennDiagram2018-08-26_20-49-49.log
        Untracked:  analysis/VennDiagram2018-08-27_00-04-36.log
        Untracked:  analysis/VennDiagram2018-08-27_00-09-27.log
        Untracked:  analysis/VennDiagram2018-08-27_00-13-57.log
        Untracked:  analysis/VennDiagram2018-08-27_00-16-32.log
        Untracked:  analysis/VennDiagram2018-08-27_10-00-25.log
        Untracked:  analysis/VennDiagram2018-08-28_06-03-13.log
        Untracked:  analysis/VennDiagram2018-08-28_06-03-14.log
        Untracked:  analysis/VennDiagram2018-08-28_06-05-50.log
        Untracked:  analysis/VennDiagram2018-08-28_06-06-58.log
        Untracked:  analysis/VennDiagram2018-08-28_06-10-12.log
        Untracked:  analysis/VennDiagram2018-08-28_06-10-13.log
        Untracked:  analysis/VennDiagram2018-08-28_06-18-29.log
        Untracked:  analysis/VennDiagram2018-08-28_07-22-26.log
        Untracked:  analysis/VennDiagram2018-08-28_07-22-27.log
        Untracked:  analysis/background_dds_david.csv
        Untracked:  analysis/correlations_bet_covariates.Rmd
        Untracked:  analysis/correlations_over_time.Rmd
        Untracked:  analysis/genocode_annotation_info.Rmd
        Untracked:  analysis/genotypes.Rmd
        Untracked:  analysis/import_transcript_level_estimates.Rmd
        Untracked:  analysis/test_dds_david.csv
        Untracked:  analysis/variables_by_time.Rmd
        Untracked:  analysis/voom_limma.Rmd
        Untracked:  analysis/voom_limma_hg37.Rmd
        Untracked:  analysis/voom_limma_weight_change.Rmd
        Untracked:  data/BAN2 Dates_T1_T2.xlsx
        Untracked:  data/BAN_DATES.csv
        Untracked:  data/BAN_DATES.xlsx
        Untracked:  data/BAN_DATES_txt.csv
        Untracked:  data/Ban_geno.csv
        Untracked:  data/Ban_geno.xlsx
        Untracked:  data/Blood_dates.txt
        Untracked:  data/DAVID_background.txt
        Untracked:  data/DAVID_list_T1T2.txt
        Untracked:  data/DAVID_list_T1T2_weight.txt
        Untracked:  data/DAVID_list_T2T3.txt
        Untracked:  data/DAVID_list_T2T3_weight.txt
        Untracked:  data/DAVID_results/
        Untracked:  data/DAVID_top100_list_T1T2.txt
        Untracked:  data/DAVID_top100_list_T1T2_weight.txt
        Untracked:  data/DAVID_top100_list_T2T3.txt
        Untracked:  data/DAVID_top100_list_T2T3_weight.txt
        Untracked:  data/Eigengenes/
        Untracked:  data/FemaleWeightRestoration-01-dataInput.RData
        Untracked:  data/FemaleWeightRestoration-resid-01-dataInput.RData
        Untracked:  data/FemaleWeightRestoration-resid-T1T2-01-dataInput.RData
        Untracked:  data/HTSF_IDs.sav
        Untracked:  data/Homo_sapiens.GRCh38.v22_table.txt
        Untracked:  data/Labels.csv
        Untracked:  data/Labels.xlsx
        Untracked:  data/RIN.xlsx
        Untracked:  data/RIN_over_time.csv
        Untracked:  data/RIN_over_time.xlsx
        Untracked:  data/T0_consolid.csv
        Untracked:  data/T0_consolid.xlsx
        Untracked:  data/age_t1.txt
        Untracked:  data/birthday_age.csv
        Untracked:  data/birthday_age.xlsx
        Untracked:  data/clinical_sample_info_geno.csv
        Untracked:  data/cmd_info.json
        Untracked:  data/counts_hg37_gc_txsalmon.RData
        Untracked:  data/counts_hg38_gc.RData
        Untracked:  data/counts_hg38_gc_dds.RData
        Untracked:  data/counts_hg38_gc_txsalmon.RData
        Untracked:  data/covar_lm.csv
        Untracked:  data/covar_lm_missing.csv
        Untracked:  data/eigengenes_T1_T2_cov_adj_exp_5_modules.txt
        Untracked:  data/eigengenes_T1_T2_module_background.txt
        Untracked:  data/eigengenes_adj_exp_7_modules.txt
        Untracked:  data/eigengenes_cov_adj_exp_14_modules.txt
        Untracked:  data/eigengenes_module_background.txt
        Untracked:  data/eigengenes_unadj_exp_10_modules.txt
        Untracked:  data/eigengenes_unadj_exp_6_modules.txt
        Untracked:  data/eigengenes_unadj_exp_9_modules.txt
        Untracked:  data/files_list.txt
        Untracked:  data/final_covariates.csv
        Untracked:  data/gene_exp_values_2202.txt
        Untracked:  data/gene_exp_values_2209.txt
        Untracked:  data/gene_exp_values_2218.txt
        Untracked:  data/gene_exp_values_2220.txt
        Untracked:  data/gene_exp_values_2226.txt
        Untracked:  data/gene_exp_values_2228.txt
        Untracked:  data/gene_expression_filtered_T1T5.csv
        Untracked:  data/gene_names_58387.txt
        Untracked:  data/gene_to_tran.txt
        Untracked:  data/lm_covar_fixed_random.csv
        Untracked:  data/lm_covar_fixed_random_geno.csv
        Untracked:  data/logs/
        Untracked:  data/module_T1T2_cov_adj_blue.txt
        Untracked:  data/module_T1T2_cov_adj_brown.txt
        Untracked:  data/module_T1T2_cov_adj_turquoise.txt
        Untracked:  data/module_T1T2_cov_adj_yellow.txt
        Untracked:  data/module_adj_cov_merged_blue.txt
        Untracked:  data/module_adj_cov_merged_brown.txt
        Untracked:  data/module_adj_cov_merged_cyan.txt
        Untracked:  data/module_adj_cov_merged_green.txt
        Untracked:  data/module_adj_cov_merged_greenyellow.txt
        Untracked:  data/module_adj_cov_merged_magenta.txt
        Untracked:  data/module_adj_cov_merged_red.txt
        Untracked:  data/module_adj_cov_merged_salmon.txt
        Untracked:  data/module_adj_cov_merged_tan.txt
        Untracked:  data/module_adj_cov_merged_yellow.txt
        Untracked:  data/module_black.txt
        Untracked:  data/module_blue.txt
        Untracked:  data/module_brown.txt
        Untracked:  data/module_cov_adj_black.txt
        Untracked:  data/module_cov_adj_blue.txt
        Untracked:  data/module_cov_adj_brown.txt
        Untracked:  data/module_cov_adj_cyan.txt
        Untracked:  data/module_cov_adj_green.txt
        Untracked:  data/module_cov_adj_greenyellow.txt
        Untracked:  data/module_cov_adj_magenta.txt
        Untracked:  data/module_cov_adj_pink.txt
        Untracked:  data/module_cov_adj_purple.txt
        Untracked:  data/module_cov_adj_red.txt
        Untracked:  data/module_cov_adj_salmon.txt
        Untracked:  data/module_cov_adj_tan.txt
        Untracked:  data/module_cov_adj_turquoise.txt
        Untracked:  data/module_cov_adj_yellow.txt
        Untracked:  data/module_cyan.txt
        Untracked:  data/module_green.txt
        Untracked:  data/module_greenyellow.txt
        Untracked:  data/module_magenta.txt
        Untracked:  data/module_merged_black.txt
        Untracked:  data/module_merged_blue.txt
        Untracked:  data/module_merged_brown.txt
        Untracked:  data/module_merged_cyan.txt
        Untracked:  data/module_merged_green.txt
        Untracked:  data/module_merged_greenyellow.txt
        Untracked:  data/module_merged_magenta.txt
        Untracked:  data/module_merged_pink.txt
        Untracked:  data/module_merged_purple.txt
        Untracked:  data/module_merged_red.txt
        Untracked:  data/module_merged_salmon.txt
        Untracked:  data/module_merged_tan.txt
        Untracked:  data/module_merged_turquoise.txt
        Untracked:  data/module_merged_yellow.txt
        Untracked:  data/module_pink.txt
        Untracked:  data/module_purple.txt
        Untracked:  data/module_red.txt
        Untracked:  data/module_salmon.txt
        Untracked:  data/module_tan.txt
        Untracked:  data/module_turquoise.txt
        Untracked:  data/module_yellow.txt
        Untracked:  data/notimecovariates.csv
        Untracked:  data/only_individuals_biomarkers_weight_restoration_study.xlsx
        Untracked:  data/pcs_genes.csv
        Untracked:  data/pcs_genes.txt
        Untracked:  data/rest1t2_BI_hg37.rds
        Untracked:  data/rest1t2_BI_hg38.rds
        Untracked:  data/rest1t2_hg37.rds
        Untracked:  data/rest1t2_psych_meds_BMI_hg37.rds
        Untracked:  data/rest1t2_psych_meds_hg37.rds
        Untracked:  data/rest2t3_BI_hg37.rds
        Untracked:  data/rest2t3_BI_hg38.rds
        Untracked:  data/rest2t3_hg37.rds
        Untracked:  data/rest2t3_psych_meds_BMI_hg37.rds
        Untracked:  data/rest2t3_psych_meds_hg37.rds
        Untracked:  data/salmon_gene_matrix_bak_reorder_time.txt
        Untracked:  data/technical_sample_info.csv
        Untracked:  data/tx_to_gene.txt
        Untracked:  data/tx_to_gene_37.txt
        Untracked:  data/usa2.pcawithref.menv.mds_cov
        Untracked:  data/vsd_values_hg38_gc.rds
        Untracked:  data/~$Labels.xlsx
        Untracked:  data/~$T0_consolid.xlsx
        Untracked:  docs/VennDiagram2018-07-24_06-55-46.log
        Untracked:  docs/VennDiagram2018-07-24_06-56-13.log
        Untracked:  docs/VennDiagram2018-07-24_06-56-50.log
        Untracked:  docs/VennDiagram2018-07-24_06-58-41.log
        Untracked:  docs/VennDiagram2018-07-24_07-00-07.log
        Untracked:  docs/VennDiagram2018-07-24_07-00-42.log
        Untracked:  docs/VennDiagram2018-07-24_07-01-08.log
        Untracked:  docs/figure/
    
    Unstaged changes:
        Modified:   analysis/_site.yml
        Modified:   analysis/about.Rmd
        Deleted:    analysis/chunks.R
        Modified:   analysis/index.Rmd
        Modified:   analysis/license.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.

Introduction

The goal of this script is to identify the major drivers of gene expression level variation in the data.

library(DESeq2)
Loading required package: S4Vectors
Loading required package: stats4
Loading required package: BiocGenerics
Loading required package: parallel

Attaching package: 'BiocGenerics'
The following objects are masked from 'package:parallel':

    clusterApply, clusterApplyLB, clusterCall, clusterEvalQ,
    clusterExport, clusterMap, parApply, parCapply, parLapply,
    parLapplyLB, parRapply, parSapply, parSapplyLB
The following objects are masked from 'package:stats':

    IQR, mad, sd, var, xtabs
The following objects are masked from 'package:base':

    anyDuplicated, append, as.data.frame, cbind, colMeans,
    colnames, colSums, do.call, duplicated, eval, evalq, Filter,
    Find, get, grep, grepl, intersect, is.unsorted, lapply,
    lengths, Map, mapply, match, mget, order, paste, pmax,
    pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce,
    rowMeans, rownames, rowSums, sapply, setdiff, sort, table,
    tapply, union, unique, unsplit, which, which.max, which.min

Attaching package: 'S4Vectors'
The following object is masked from 'package:base':

    expand.grid
Loading required package: IRanges
Loading required package: GenomicRanges
Loading required package: GenomeInfoDb
Loading required package: SummarizedExperiment
Loading required package: Biobase
Welcome to Bioconductor

    Vignettes contain introductory material; view with
    'browseVignettes()'. To cite Bioconductor, see
    'citation("Biobase")', and for packages 'citation("pkgname")'.
Loading required package: DelayedArray
Loading required package: matrixStats

Attaching package: 'matrixStats'
The following objects are masked from 'package:Biobase':

    anyMissing, rowMedians

Attaching package: 'DelayedArray'
The following objects are masked from 'package:matrixStats':

    colMaxs, colMins, colRanges, rowMaxs, rowMins, rowRanges
The following object is masked from 'package:base':

    apply
library("pheatmap")
Warning: package 'pheatmap' was built under R version 3.4.4
library("gplots")

Attaching package: 'gplots'
The following object is masked from 'package:IRanges':

    space
The following object is masked from 'package:S4Vectors':

    space
The following object is masked from 'package:stats':

    lowess
library("RColorBrewer")
library("ggplot2")
Warning: package 'ggplot2' was built under R version 3.4.4
library("cowplot")
Warning: package 'cowplot' was built under R version 3.4.4

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
# Read in the filtered data (file made from the end of voom_limma.Rmd)

init_pc <- read.csv("../data/gene_expression_filtered_T1T5.csv")

dim(init_pc)
[1] 11504   157
init_pc <- init_pc[,2:157]

labels <- read.csv("../data/lm_covar_fixed_random.csv")
labels_123 <- as.data.frame(paste(labels$Individual, labels$Time, sep = "_"))
colnames(labels_123) <- c("ID_time")

PCA on all data (vst transformed from DESEq2)

vst <- readRDS("../data/vsd_values_hg38_gc.rds")

# Run PCA on the normalized data

pca_genes <- prcomp(t(vst), center = TRUE)

matrixpca <- pca_genes$x
PC1 <- matrixpca[,1]
PC2 <- matrixpca[,2]
pc3 <- matrixpca[,3]
pc4 <- matrixpca[,4]
pc5 <- matrixpca[,5]

matrixpca <- as.data.frame(matrixpca)

summary <- summary(pca_genes)

head(summary$importance[2,1:5])
    PC1     PC2     PC3     PC4     PC5 
0.12229 0.07022 0.05801 0.05184 0.03742 
norm_count <- ggplot(data=matrixpca, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")

plot_grid(norm_count)

PCA on filtered data

# Load gene expression data from all 156 samples

normalized_data <- read.csv("../data/gene_expression_filtered_T1T5.csv")

# Run PCA on the normalized data

pca_genes <- prcomp(t(normalized_data[,2:157]), scale = TRUE, center = TRUE)

matrixpca <- pca_genes$x
PC1 <- matrixpca[,1]
PC2 <- matrixpca[,2]
pc3 <- matrixpca[,3]
pc4 <- matrixpca[,4]
pc5 <- matrixpca[,5]

matrixpca <- as.data.frame(matrixpca)

summary <- summary(pca_genes)

head(summary$importance[2,1:5])
    PC1     PC2     PC3     PC4     PC5 
0.23496 0.13460 0.09950 0.05124 0.03724 
norm_count <- ggplot(data=matrixpca, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")

plot_grid(norm_count)

PCA on scaled data

# Add Bioinformatics step of scaling each gene

# centering with 'scale()'
center_scale <- function(x) {
    scale(x, scale = TRUE)
}

# apply it
centered_init_pc <- center_scale(init_pc)


check <- cor(init_pc)
cx <- sweep(check, 2, colMeans(check), "-")

pca_genes <- prcomp(check, center = TRUE, scale = FALSE)

matrixpca <- pca_genes$x
PC1 <- matrixpca[,1]
PC2 <- matrixpca[,2]
pc3 <- matrixpca[,3]
pc4 <- matrixpca[,4]
pc5 <- matrixpca[,5]

matrixpca <- as.data.frame(matrixpca)

summary <- summary(pca_genes)

head(summary$importance[2,1:5])
    PC1     PC2     PC3     PC4     PC5 
0.65175 0.18426 0.07038 0.03644 0.01884 
norm_count <- ggplot(data=matrixpca, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")

plot_grid(norm_count)

PCA on normalized, filtered data- use loadings only

pca_genes <- prcomp(init_pc, center = TRUE, scale = FALSE)

pca_rot <- as.data.frame(pca_genes$rotation)
pca_rot[,1] <- as.numeric(pca_rot[,1])
pca_rot[,2] <- as.numeric(pca_rot[,2])


norm_count <- ggplot(data=pca_rot, aes(x=PC1, y=PC2, color=as.factor(labels$Time))) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time")

plot_grid(norm_count)

SVD on filtered data

# Run PCA

X = t(scale(t(init_pc),center=TRUE,scale=FALSE))
sv = svd(t(X))
U = sv$u
V = sv$v
D = sv$d
## in R calculate the rank of a matrix is by
#qr(t(X))$rank

plot(U[,1],U[,2],xlab="PC1",ylab="PC2")

U <- as.data.frame(U)
norm_count <- ggplot(data=U, aes(x=U[,1], y=U[,2], color=labels$Time)) + geom_point(aes(colour = as.factor(labels$Time))) + ggtitle("PCA of normalized counts") + scale_color_discrete(name = "Time") + xlab("PC1") + ylab("PC2")

plot_grid(norm_count)

#save_plot("/Users/laurenblake/Dropbox/Lauren Blake/Figures/PCA_time_August10.png", norm_count,
#          base_aspect_ratio = 1)



# Variance explained 

varex = 0
cumvar = 0
denom = sum(D^2)
for(i in 1:64){
  varex[i] = D[i]^2/denom
  cumvar[i] = sum(D[1:i]^2)/denom
}

## variance explained by each PC cumulatively
varex
 [1] 0.191251884 0.101480941 0.076890551 0.056966384 0.047740308
 [6] 0.028534255 0.024038043 0.022025028 0.021309608 0.017922737
[11] 0.016249126 0.015280302 0.013255328 0.012700219 0.011990477
[16] 0.010997071 0.010762881 0.009782479 0.009333403 0.008706081
[21] 0.008313230 0.008213857 0.007578975 0.007354793 0.007018724
[26] 0.006604362 0.006492543 0.006201593 0.005842621 0.005607058
[31] 0.005434460 0.005379485 0.005218961 0.004967081 0.004903652
[36] 0.004583266 0.004531455 0.004453111 0.004248581 0.004233394
[41] 0.004162922 0.003957800 0.003902488 0.003785255 0.003691630
[46] 0.003594334 0.003489787 0.003408952 0.003371267 0.003297509
[51] 0.003219381 0.003093576 0.003056514 0.002994842 0.002942849
[56] 0.002890365 0.002825417 0.002793333 0.002717778 0.002548626
[61] 0.002523417 0.002504802 0.002406615 0.002389410
cumvar
 [1] 0.1912519 0.2927328 0.3696234 0.4265898 0.4743301 0.5028643 0.5269024
 [8] 0.5489274 0.5702370 0.5881597 0.6044089 0.6196892 0.6329445 0.6456447
[15] 0.6576352 0.6686323 0.6793951 0.6891776 0.6985110 0.7072171 0.7155303
[22] 0.7237442 0.7313232 0.7386780 0.7456967 0.7523010 0.7587936 0.7649952
[29] 0.7708378 0.7764449 0.7818793 0.7872588 0.7924778 0.7974449 0.8023485
[36] 0.8069318 0.8114632 0.8159163 0.8201649 0.8243983 0.8285612 0.8325190
[43] 0.8364215 0.8402068 0.8438984 0.8474927 0.8509825 0.8543915 0.8577627
[50] 0.8610603 0.8642796 0.8673732 0.8704297 0.8734246 0.8763674 0.8792578
[57] 0.8820832 0.8848765 0.8875943 0.8901429 0.8926664 0.8951712 0.8975778
[64] 0.8999672

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] cowplot_0.9.3              ggplot2_3.0.0             
 [3] RColorBrewer_1.1-2         gplots_3.0.1              
 [5] pheatmap_1.0.10            DESeq2_1.18.1             
 [7] SummarizedExperiment_1.8.1 DelayedArray_0.4.1        
 [9] matrixStats_0.54.0         Biobase_2.38.0            
[11] GenomicRanges_1.30.3       GenomeInfoDb_1.14.0       
[13] IRanges_2.12.0             S4Vectors_0.16.0          
[15] BiocGenerics_0.24.0       

loaded via a namespace (and not attached):
 [1] bitops_1.0-6           bit64_0.9-7            rprojroot_1.3-2       
 [4] tools_3.4.3            backports_1.1.2        R6_2.2.2              
 [7] rpart_4.1-13           KernSmooth_2.23-15     Hmisc_4.1-1           
[10] DBI_1.0.0              lazyeval_0.2.1         colorspace_1.3-2      
[13] nnet_7.3-12            withr_2.1.2            tidyselect_0.2.4      
[16] gridExtra_2.3          bit_1.1-14             compiler_3.4.3        
[19] git2r_0.23.0           htmlTable_1.12         labeling_0.3          
[22] caTools_1.17.1.1       scales_1.0.0           checkmate_1.8.5       
[25] genefilter_1.60.0      stringr_1.3.1          digest_0.6.16         
[28] foreign_0.8-71         rmarkdown_1.10         R.utils_2.6.0         
[31] XVector_0.18.0         base64enc_0.1-3        pkgconfig_2.0.2       
[34] htmltools_0.3.6        htmlwidgets_1.2        rlang_0.2.2           
[37] rstudioapi_0.7         RSQLite_2.1.1          bindr_0.1.1           
[40] BiocParallel_1.12.0    gtools_3.8.1           acepack_1.4.1         
[43] dplyr_0.7.6            R.oo_1.22.0            RCurl_1.95-4.11       
[46] magrittr_1.5           GenomeInfoDbData_1.0.0 Formula_1.2-3         
[49] Matrix_1.2-14          Rcpp_0.12.18           munsell_0.5.0         
[52] R.methodsS3_1.7.1      stringi_1.2.4          whisker_0.3-2         
[55] yaml_2.2.0             zlibbioc_1.24.0        plyr_1.8.4            
[58] grid_3.4.3             blob_1.1.1             gdata_2.18.0          
[61] crayon_1.3.4           lattice_0.20-35        splines_3.4.3         
[64] annotate_1.56.2        locfit_1.5-9.1         knitr_1.20            
[67] pillar_1.3.0           geneplotter_1.56.0     XML_3.98-1.16         
[70] glue_1.3.0             evaluate_0.11          latticeExtra_0.6-28   
[73] data.table_1.11.4      gtable_0.2.0           purrr_0.2.5           
[76] assertthat_0.2.0       xtable_1.8-2           survival_2.42-6       
[79] tibble_1.4.2           AnnotationDbi_1.40.0   memoise_1.1.0         
[82] workflowr_1.1.1        bindrcpp_0.2.2         cluster_2.0.7-1       



This reproducible R Markdown analysis was created with workflowr 1.1.1