Last updated: 2018-11-15

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(12345)

    The command set.seed(12345) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 7bcd123

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .DS_Store
        Ignored:    analysis/.DS_Store
        Ignored:    analysis/VennDiagram2018-07-24_06-55-46.log
        Ignored:    analysis/VennDiagram2018-07-24_06-56-13.log
        Ignored:    analysis/VennDiagram2018-07-24_06-56-50.log
        Ignored:    analysis/VennDiagram2018-07-24_06-58-41.log
        Ignored:    analysis/VennDiagram2018-07-24_07-00-07.log
        Ignored:    analysis/VennDiagram2018-07-24_07-00-42.log
        Ignored:    analysis/VennDiagram2018-07-24_07-01-08.log
        Ignored:    analysis/VennDiagram2018-08-17_15-13-24.log
        Ignored:    analysis/VennDiagram2018-08-17_15-13-30.log
        Ignored:    analysis/VennDiagram2018-08-17_15-15-06.log
        Ignored:    analysis/VennDiagram2018-08-17_15-16-01.log
        Ignored:    analysis/VennDiagram2018-08-17_15-17-51.log
        Ignored:    analysis/VennDiagram2018-08-17_15-18-42.log
        Ignored:    analysis/VennDiagram2018-08-17_15-19-21.log
        Ignored:    analysis/VennDiagram2018-08-20_09-07-57.log
        Ignored:    analysis/VennDiagram2018-08-20_09-08-37.log
        Ignored:    analysis/VennDiagram2018-08-26_19-54-03.log
        Ignored:    analysis/VennDiagram2018-08-26_20-47-08.log
        Ignored:    analysis/VennDiagram2018-08-26_20-49-49.log
        Ignored:    analysis/VennDiagram2018-08-27_00-04-36.log
        Ignored:    analysis/VennDiagram2018-08-27_00-09-27.log
        Ignored:    analysis/VennDiagram2018-08-27_00-13-57.log
        Ignored:    analysis/VennDiagram2018-08-27_00-16-32.log
        Ignored:    analysis/VennDiagram2018-08-27_10-00-25.log
        Ignored:    analysis/VennDiagram2018-08-28_06-03-13.log
        Ignored:    analysis/VennDiagram2018-08-28_06-03-14.log
        Ignored:    analysis/VennDiagram2018-08-28_06-05-50.log
        Ignored:    analysis/VennDiagram2018-08-28_06-06-58.log
        Ignored:    analysis/VennDiagram2018-08-28_06-10-12.log
        Ignored:    analysis/VennDiagram2018-08-28_06-10-13.log
        Ignored:    analysis/VennDiagram2018-08-28_06-18-29.log
        Ignored:    analysis/VennDiagram2018-08-28_07-22-26.log
        Ignored:    analysis/VennDiagram2018-08-28_07-22-27.log
        Ignored:    analysis/VennDiagram2018-08-28_13-05-27.log
        Ignored:    analysis/VennDiagram2018-09-12_01-45-59.log
        Ignored:    analysis/VennDiagram2018-09-12_01-49-31.log
        Ignored:    analysis/VennDiagram2018-09-12_01-58-11.log
        Ignored:    analysis/VennDiagram2018-09-12_01-59-46.log
        Ignored:    analysis/VennDiagram2018-09-12_02-08-07.log
        Ignored:    analysis/VennDiagram2018-09-12_02-08-56.log
        Ignored:    analysis/VennDiagram2018-11-15_14-20-08.log
        Ignored:    analysis/VennDiagram2018-11-15_14-20-15.log
        Ignored:    analysis/VennDiagram2018-11-15_14-20-23.log
        Ignored:    analysis/VennDiagram2018-11-15_14-21-14.log
        Ignored:    analysis/VennDiagram2018-11-15_14-21-57.log
        Ignored:    analysis/VennDiagram2018-11-15_14-33-34.log
        Ignored:    analysis/VennDiagram2018-11-15_14-36-19.log
        Ignored:    analysis/VennDiagram2018-11-15_14-48-41.log
        Ignored:    analysis/VennDiagram2018-11-15_14-48-42.log
        Ignored:    analysis/VennDiagram2018-11-15_15-03-35.log
        Ignored:    analysis/VennDiagram2018-11-15_15-03-55.log
        Ignored:    analysis/VennDiagram2018-11-15_15-07-05.log
        Ignored:    analysis/VennDiagram2018-11-15_15-07-25.log
        Ignored:    analysis/VennDiagram2018-11-15_15-09-29.log
        Ignored:    analysis/VennDiagram2018-11-15_15-09-48.log
        Ignored:    analysis/VennDiagram2018-11-15_15-14-30.log
        Ignored:    analysis/VennDiagram2018-11-15_15-15-25.log
        Ignored:    analysis/VennDiagram2018-11-15_15-16-04.log
        Ignored:    data/DAVID_2covar/
        Ignored:    data/DAVID_results/
        Ignored:    data/Eigengenes/
        Ignored:    data/aux_info/
        Ignored:    data/hg_38/
        Ignored:    data/libParams/
        Ignored:    data/logs/
        Ignored:    docs/VennDiagram2018-07-24_06-55-46.log
        Ignored:    docs/VennDiagram2018-07-24_06-56-13.log
        Ignored:    docs/VennDiagram2018-07-24_06-56-50.log
        Ignored:    docs/VennDiagram2018-07-24_06-58-41.log
        Ignored:    docs/VennDiagram2018-07-24_07-00-07.log
        Ignored:    docs/VennDiagram2018-07-24_07-00-42.log
        Ignored:    docs/VennDiagram2018-07-24_07-01-08.log
        Ignored:    docs/figure/.DS_Store
        Ignored:    output/.DS_Store
    
    Untracked files:
        Untracked:  docs/figure/time_two_covar.Rmd/
    
    Unstaged changes:
        Modified:   analysis/time_two_covar.Rmd
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 7bcd123 Lauren Blake 2018-11-15 Nov 15 weight info


Introduction

The goal of this script is to identify the individuals that weight relapsed and the amount of change they underwent.

Get weight change data

# Load libraries

library(ggplot2)
Warning: package 'ggplot2' was built under R version 3.4.4
library(cowplot)
Warning: package 'cowplot' was built under R version 3.4.4

Attaching package: 'cowplot'
The following object is masked from 'package:ggplot2':

    ggsave
# Get weight change data
weight_change <- read.csv("../data/weight_change.csv")

Summary of weight change data

# Subset to time point 3

weight_change_t3 <- weight_change[weight_change$time == 3,]

summary(weight_change_t3)
     BAN_ID          time       Weight      Weight_change    
 Min.   :2201   Min.   :3   Min.   : 71.5   Min.   :-14.500  
 1st Qu.:2218   1st Qu.:3   1st Qu.:102.8   1st Qu.:  0.900  
 Median :2239   Median :3   Median :108.0   Median :  7.100  
 Mean   :2237   Mean   :3   Mean   :110.0   Mean   :  7.601  
 3rd Qu.:2256   3rd Qu.:3   3rd Qu.:118.4   3rd Qu.: 10.800  
 Max.   :2274   Max.   :3   Max.   :148.9   Max.   : 45.200  
                            NA's   :14      NA's   :14       
   Relapse_t3       Relapse_t4   Relapse_t5 
 Min.   :0.0000   Min.   :0    Min.   :0.0  
 1st Qu.:0.0000   1st Qu.:0    1st Qu.:0.0  
 Median :0.0000   Median :0    Median :0.5  
 Mean   :0.1951   Mean   :0    Mean   :0.5  
 3rd Qu.:0.0000   3rd Qu.:0    3rd Qu.:1.0  
 Max.   :1.0000   Max.   :0    Max.   :1.0  
 NA's   :14       NA's   :49   NA's   :49   
# How many are negative and how many are neutral/positive weight gain?

summary(weight_change_t3$Weight_change <0)
   Mode   FALSE    TRUE    NA's 
logical      33       8      14 
weight_change_t3[,5] <- weight_change_t3$Weight_change <0
colnames(weight_change_t3) <- c("BAN_ID", "time", "Weight", "Weight_change", "weight_relapse")

# Weight change from T2 to T3

weight_change_t3 <- weight_change_t3[complete.cases(weight_change_t3), ]
weight_change_t3_plot <- ggplot(weight_change_t3, aes(weight_relapse, Weight_change)) + geom_boxplot() + xlab("Lost weight from T2 to T3") + ylab("Weight change from T2 to T3")

save_plot("/Users/laurenblake/Dropbox/Figures/weight_change_t3.png", weight_change_t3_plot,          base_aspect_ratio = 1)

Weights over time, stratified by weight loss at T3

# Subset to time point 1

weight_change_t1 <- weight_change[weight_change$time == 1, 1:5]

# How many are negative and how many are neutral/positive weight gain?

summary(weight_change_t1$Relapse_t3 >0)
   Mode   FALSE    TRUE    NA's 
logical      33       8      14 
weight_change_t1[,6] <- weight_change_t1$Relapse_t3 >0
colnames(weight_change_t1) <- c("BAN_ID", "time", "Weight", "Weight_change", "Relapse_t3", "Relapse_notes")

weight_change_t1 <- weight_change_t1[complete.cases(weight_change_t1), ]

# Plot weight at T1 
weight_t1_plot <- ggplot(weight_change_t1, aes(Relapse_notes, Weight)) + geom_boxplot() + xlab("Lost weight from T2 to T3") + ylab("Weight") + ggtitle("Weight at T1") 

save_plot("/Users/laurenblake/Dropbox/Figures/weight_t1.png", weight_t1_plot,          base_aspect_ratio = 1)


# Subset to time point 2

weight_change_t1 <- weight_change[weight_change$time == 2, 1:5]

# How many are negative and how many are neutral/positive weight gain?

summary(weight_change_t1$Relapse_t3 >0)
   Mode   FALSE    TRUE    NA's 
logical      33       8      14 
weight_change_t1[,6] <- weight_change_t1$Relapse_t3 >0
colnames(weight_change_t1) <- c("BAN_ID", "time", "Weight", "Weight_change", "Relapse_t3", "Relapse_notes")

weight_change_t1 <- weight_change_t1[complete.cases(weight_change_t1), ]

# Plot weight at T1 
weight_t2_plot <- ggplot(weight_change_t1, aes(Relapse_notes, Weight)) + geom_boxplot() + xlab("Lost weight from T2 to T3") + ylab("Weight") + ggtitle("Weight at T2") + ylim(53,125)

save_plot("/Users/laurenblake/Dropbox/Figures/weight_t2.png", weight_t2_plot,          base_aspect_ratio = 1)


# Weight change from T1 to T2

weight_change_t1 <- weight_change_t1[complete.cases(weight_change_t1), ]
weight_change_t1_plot <- ggplot(weight_change_t1, aes(Relapse_notes, Weight_change)) + geom_boxplot() + xlab("Lost weight from T2 to T3") + ylab("Weight change from T1 to T2") + ylim(-15,46)

plot_grid(weight_change_t1_plot)

save_plot("/Users/laurenblake/Dropbox/Figures/weight_change_t1t2.png", weight_change_t1_plot,          base_aspect_ratio = 1)



# Subset to time point 3

weight_change_t1 <- weight_change[weight_change$time == 3, 1:5]

# How many are negative and how many are neutral/positive weight gain?

summary(weight_change_t1$Relapse_t3 >0)
   Mode   FALSE    TRUE    NA's 
logical      33       8      14 
weight_change_t1[,6] <- weight_change_t1$Relapse_t3 >0
colnames(weight_change_t1) <- c("BAN_ID", "time", "Weight", "Weight_change", "Relapse_t3", "Relapse_notes")

weight_change_t1 <- weight_change_t1[complete.cases(weight_change_t1), ]

# Plot weight at T1 
weight_t3_plot <- ggplot(weight_change_t1, aes(Relapse_notes, Weight)) + geom_boxplot() + xlab("Lost weight from T2 to T3") + ylab("Weight") + ggtitle("Weight at T3") + ylim(53,125)

save_plot("/Users/laurenblake/Dropbox/Figures/weight_t3.png", weight_t3_plot, base_aspect_ratio = 1)
Warning: Removed 6 rows containing non-finite values (stat_boxplot).
weight_change_t1_plot <- ggplot(weight_change_t1, aes(Relapse_notes, Weight_change)) + geom_boxplot() + xlab("Lost weight from T2 to T3") + ylab("Weight change from T2 to T3") + ylim(-15,46)

plot_grid(weight_change_t1_plot)

save_plot("/Users/laurenblake/Dropbox/Figures/weight_change_t2t3.png", weight_change_t1_plot,          base_aspect_ratio = 1)

Let’s look at the 8 individuals

# Let's look at the weight over time for the individuals with weight loss

weight_change_8 <- weight_change[weight_change$Relapse_t3 == 1,]

weight_change_8 <- weight_change_8[complete.cases(weight_change_8[,1:5]), ]

# Plot the individuals

ind_time <- ggplot(weight_change_8, aes(time, Weight, colour = as.factor(weight_change_8$BAN_ID))) + geom_point() + geom_line() + theme(legend.position="none") + xlab("Time")

plot_grid(ind_time)

save_plot("/Users/laurenblake/Dropbox/Figures/weight_change_no_t3.png", ind_time,          base_aspect_ratio = 1)

# Summarize the 

weight_change_8_t3 <- weight_change_8[weight_change_8$time == 3,]

summary(weight_change_8_t3)
     BAN_ID          time       Weight       Weight_change    
 Min.   :2207   Min.   :3   Min.   : 71.50   Min.   :-14.500  
 1st Qu.:2226   1st Qu.:3   1st Qu.: 95.47   1st Qu.: -6.225  
 Median :2238   Median :3   Median :100.85   Median : -3.950  
 Mean   :2241   Mean   :3   Mean   :100.45   Mean   : -5.889  
 3rd Qu.:2262   3rd Qu.:3   3rd Qu.:108.92   3rd Qu.: -3.595  
 Max.   :2270   Max.   :3   Max.   :119.20   Max.   : -2.050  
                                                              
   Relapse_t3   Relapse_t4   Relapse_t5  
 Min.   :1    Min.   :0    Min.   :0.00  
 1st Qu.:1    1st Qu.:0    1st Qu.:0.25  
 Median :1    Median :0    Median :0.50  
 Mean   :1    Mean   :0    Mean   :0.50  
 3rd Qu.:1    3rd Qu.:0    3rd Qu.:0.75  
 Max.   :1    Max.   :0    Max.   :1.00  
              NA's   :6    NA's   :6     

Correlation between weight relapse and other variables

# Read in the clinical covariates

clinical_sample_info <- read.csv("../data/lm_covar_fixed_random.csv")
dim(clinical_sample_info)
[1] 156  14
# Subset to T1-T3

clinical_sample <- clinical_sample_info[1:144,(-12)]

dim(clinical_sample)
[1] 144  13
# Relapse 

chisq.test(as.factor(clinical_sample$Time), as.factor(clinical_sample$Relapse_t3), simulate.p.value = TRUE)$p.value
[1] 0.9585207
# Individual-yes

chisq.test(as.factor(clinical_sample$Individ), as.factor(clinical_sample$Relapse_t3), simulate.p.value = TRUE)$p.value
[1] 0.0004997501
# Age-yes
summary(lm(clinical_sample$Age ~ as.factor(clinical_sample$Relapse_t3)))

Call:
lm(formula = clinical_sample$Age ~ as.factor(clinical_sample$Relapse_t3))

Residuals:
   Min     1Q Median     3Q    Max 
-9.583 -5.583 -1.978  2.022 20.021 

Coefficients:
                                       Estimate Std. Error t value
(Intercept)                             23.9785     0.8045  29.806
as.factor(clinical_sample$Relapse_t3)1   6.6048     1.7763   3.718
                                       Pr(>|t|)    
(Intercept)                             < 2e-16 ***
as.factor(clinical_sample$Relapse_t3)1 0.000311 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.758 on 115 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared:  0.1073,    Adjusted R-squared:  0.09956 
F-statistic: 13.83 on 1 and 115 DF,  p-value: 0.0003114
# BE-no

chisq.test(as.factor(clinical_sample$BE_GROUP), as.factor(clinical_sample$Relapse_t3), simulate.p.value = TRUE)$p.value
[1] 0.4742629
# Psych meds- no

chisq.test(as.factor(clinical_sample$psychmeds), as.factor(clinical_sample$Relapse_t3), simulate.p.value = TRUE)$p.value
[1] 0.8270865
# RBC-no

summary(lm(clinical_sample$RBC ~ as.factor(clinical_sample$Relapse_t3)))

Call:
lm(formula = clinical_sample$RBC ~ as.factor(clinical_sample$Relapse_t3))

Residuals:
     Min       1Q   Median       3Q      Max 
-1.40750 -0.24763  0.02237  0.27237  1.22237 

Coefficients:
                                       Estimate Std. Error t value
(Intercept)                             4.22763    0.04503  93.883
as.factor(clinical_sample$Relapse_t3)1 -0.01013    0.09943  -0.102
                                       Pr(>|t|)    
(Intercept)                              <2e-16 ***
as.factor(clinical_sample$Relapse_t3)1    0.919    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4343 on 115 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared:  9.034e-05, Adjusted R-squared:  -0.008605 
F-statistic: 0.01039 on 1 and 115 DF,  p-value: 0.919
# AE-no

summary(lm(clinical_sample$AE ~ as.factor(clinical_sample$Relapse_t3)))

Call:
lm(formula = clinical_sample$AE ~ as.factor(clinical_sample$Relapse_t3))

Residuals:
     Min       1Q   Median       3Q      Max 
-0.25833 -0.06344 -0.06344  0.03656  2.64167 

Coefficients:
                                       Estimate Std. Error t value
(Intercept)                             0.16344    0.02970   5.503
as.factor(clinical_sample$Relapse_t3)1  0.09489    0.06558   1.447
                                       Pr(>|t|)    
(Intercept)                            2.29e-07 ***
as.factor(clinical_sample$Relapse_t3)1    0.151    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2864 on 115 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared:  0.01788,   Adjusted R-squared:  0.009343 
F-statistic: 2.094 on 1 and 115 DF,  p-value: 0.1506
# Race- no

chisq.test(as.factor(clinical_sample$Race), as.factor(clinical_sample$Relapse_t3), simulate.p.value = TRUE)$p.value
[1] 0.4582709
# AL- no

summary(lm(clinical_sample$AL ~ as.factor(clinical_sample$Relapse_t3)))

Call:
lm(formula = clinical_sample$AL ~ as.factor(clinical_sample$Relapse_t3))

Residuals:
     Min       1Q   Median       3Q      Max 
-1.11505 -0.41505 -0.01505  0.48495  1.38495 

Coefficients:
                                       Estimate Std. Error t value
(Intercept)                             1.81505    0.05936  30.580
as.factor(clinical_sample$Relapse_t3)1 -0.11505    0.13105  -0.878
                                       Pr(>|t|)    
(Intercept)                              <2e-16 ***
as.factor(clinical_sample$Relapse_t3)1    0.382    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5724 on 115 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared:  0.006657,  Adjusted R-squared:  -0.00198 
F-statistic: 0.7707 on 1 and 115 DF,  p-value: 0.3818
# AN- no

summary(lm(clinical_sample$AN ~ as.factor(clinical_sample$Relapse_t3)))

Call:
lm(formula = clinical_sample$AN ~ as.factor(clinical_sample$Relapse_t3))

Residuals:
    Min      1Q  Median      3Q     Max 
-2.2258 -0.9258 -0.3258  0.5742  4.5500 

Coefficients:
                                       Estimate Std. Error t value
(Intercept)                              3.0258     0.1282  23.607
as.factor(clinical_sample$Relapse_t3)1   0.2242     0.2830   0.792
                                       Pr(>|t|)    
(Intercept)                              <2e-16 ***
as.factor(clinical_sample$Relapse_t3)1     0.43    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.236 on 115 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared:  0.005428,  Adjusted R-squared:  -0.003221 
F-statistic: 0.6276 on 1 and 115 DF,  p-value: 0.4299
# RIN- no

summary(lm(clinical_sample$RIN ~ as.factor(clinical_sample$Relapse_t3)))

Call:
lm(formula = clinical_sample$RIN ~ as.factor(clinical_sample$Relapse_t3))

Residuals:
     Min       1Q   Median       3Q      Max 
-2.37742 -0.27742  0.02258  0.42258  1.22258 

Coefficients:
                                       Estimate Std. Error t value
(Intercept)                             6.67742    0.07043  94.809
as.factor(clinical_sample$Relapse_t3)1 -0.10659    0.15551  -0.685
                                       Pr(>|t|)    
(Intercept)                              <2e-16 ***
as.factor(clinical_sample$Relapse_t3)1    0.494    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6792 on 115 degrees of freedom
  (27 observations deleted due to missingness)
Multiple R-squared:  0.004069,  Adjusted R-squared:  -0.004592 
F-statistic: 0.4698 on 1 and 115 DF,  p-value: 0.4945

Session information

sessionInfo()
R version 3.4.3 (2017-11-30)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: OS X El Capitan 10.11.6

Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.4/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] cowplot_0.9.3 ggplot2_3.0.0

loaded via a namespace (and not attached):
 [1] Rcpp_0.12.18      compiler_3.4.3    pillar_1.3.0     
 [4] git2r_0.23.0      plyr_1.8.4        workflowr_1.1.1  
 [7] bindr_0.1.1       R.methodsS3_1.7.1 R.utils_2.7.0    
[10] tools_3.4.3       digest_0.6.16     evaluate_0.11    
[13] tibble_1.4.2      gtable_0.2.0      pkgconfig_2.0.2  
[16] rlang_0.2.2       yaml_2.2.0        bindrcpp_0.2.2   
[19] withr_2.1.2       stringr_1.3.1     dplyr_0.7.6      
[22] knitr_1.20        rprojroot_1.3-2   grid_3.4.3       
[25] tidyselect_0.2.4  glue_1.3.0        R6_2.2.2         
[28] rmarkdown_1.10    purrr_0.2.5       magrittr_1.5     
[31] whisker_0.3-2     backports_1.1.2   scales_1.0.0     
[34] htmltools_0.3.6   assertthat_0.2.0  colorspace_1.3-2 
[37] labeling_0.3      stringi_1.2.4     lazyeval_0.2.1   
[40] munsell_0.5.0     crayon_1.3.4      R.oo_1.22.0      



This reproducible R Markdown analysis was created with workflowr 1.1.1